Часть 6

Критика теории относительности

Олег Акимов



https://youtu.be/tyyBy87dJUM

Ложная диаграмма Минковского
Ложная диаграмма Минковского

Таким образом, диаграмма, которую релятивисты называют именем Германа Минковского, носит исключительно двумерную природу. Попытка экстраполировать ее на пространство трех и большего числа измерений — математически бессмысленна.

В силу принципа двойственности, который обнаруживается через замену вертикальной оси y = ct на мнимую ось iy = ict и что отражено в таблице 2.92 двумя рядами дублирующих формул, мы можем вместо косинуса и синуса использовать гиперболические функции.

Таким образом, комплексную плоскость с системой уравнений из тригонометрических функций

cos(φ + ψ) = cosψ cosφ – sinψ sinφ,
sin(φ + ψ) = cosψ sinφ + sinψ cosφ

можно заменить вещественной плоскостью с системой гиперболических функций:

ch(φ + ψ) = chψ chφ + shψ shφ,
sh(φ + ψ) = chψ shφ + shψ chφ;

Таким образом, из чертежа (рис. 2.39б) мы выведем преобразования Лоренца, в которых, однако, уже учтены изменения масштабных единиц штрихованной системы (см. Масштаб осей при гиперболическом повороте).

формулы 15
формулы 16
формулы 17

Остается рассмотреть маленький, но очень важный вопрос, связанный с грубой математической ошибкой предельного перехода. Напомним, как релятивисты осуществляют его. Они записывают преобразования Лоренца в виде

формулы 18

Затем говорили, что условие v << c равносильно условию c → ∞, следовательно, преобразования Лоренца переходят в преобразования Галилея

формулы 19

Ошибка данного предельного перехода легко обнаруживается при рассмотрении двух принципиально различных движений координатных систем K и K' относительно друг друга. Преобразования Лоренца — это вращательное движение осей — пусть гиперболического характера — преобразование Галилея — это поступательное или продольное смещение осей

Рисунок движения осей

Не может вращательное движение осей в пределе переходить в их поступательное движение, когда начало координат системы K' (т.е. точка 0') удаляется на какое-то расстояние от начала координат системы K (точка 0).

Где допустили ошибку релятивисты?

Ошибка возникла тогда, когда условие предельного перехода β = v/c → 0 заменили неравносильным условием c → ∞

Поэтому преобразования Лоренца лучше писать не в виде, в котором скорости v и c фигурируют раздельно, а в виде преобразований, в которых v и c связаны одним параметром β = v/c

преобразования Лоренца 2

При условии β → 0 или φ → 0 гиперболические функции ведут себя следующим образом:

гиперболические функции ведут себя следующим образом

Отсюда следует, что преобразования Лоренца в случае предельного перехода параметра β → 0 трансформируются в единственно возможные равенства: x = x', ct = ct'. Никаких других выражений здесь в принципе быть не может.

Итак, казалось бы, крохотная подмена условий предельного перехода привела к колоссальным заблуждениям, будто преобразования Лоренца это те же самые преобразования Галилея, но только записанные для очень большой скорости v , сопоставимой со скоростью света c . Это, разумеется, не так.

Многим релятивистам известна обратная процедура, а именно вывод преобразований Лоренца из преобразований Галилея. Он не связан с каким-либо предельным переходом. Преобразования Лоренца получаются из преобразования Галилея путем единственного допущения: скорость света в штрихованной K' и нештрихованной системе K координат должна быть одна и та же:

x/t = x'/t' = c = const.

x = (x' + vt' )α,         x' = (x – vt)α,

Из этих равенств не сложно получить искомый множитель α

формулы 20

Таким образом, переход от Галилея к Лоренцу будет скачкообразным, он не является предельным переходом, т.е. непрерывным изменением параметра β. Условие постоянства параметра c в штрихованной и нештрихованной системах не накладывает на саму величину c никаких количественных ограничений, т.е. c может быть вполне сопоставима со скоростью v или даже меньше ее (c < v), преобразования Лоренца по-прежнему остаются в силе.

Трансформация поступательного преобразований Галилея во вращательное преобразование Лоренца означает трансформацию одной группы симметрии в совершенно другую группу симметрии. Группа преобразований Галилея не является подгруппой преобразований Лоренца или наоборот. Это — две различных группы симметрии.

Ошибка предельного перехода моментально приводит к множеству противоречий, которые не имеют никакой перспективы для разрешения. Парадокс распиленной линейки является наиболее наглядным — о нем сейчас мы расскажем.

рис. 8.2
Рис. 8.2. Парадокс распиленной линейки.

Пусть происходит транспортировка двух кусков линейки — 1 и 2. Если куски транспортируются по отдельности, то сокращение их произойдет так, как показано на финише (а) и (б). Совместная транспортировка этих кусков ничего не изменит и на финише между кусками будет виден просвет (в). Однако транспортировка целой линейки приведет к сокращению типа (г). Значит, между кусками не должен наблюдаться просвет (д) — ведь линейка «не знает», что она распилена. Итак, непонятно, как будет в действительности происходить сокращение транспортируемых кусков линейки — по варианту (в) или по варианту (д)?

Дадим разъяснения к парадоксу распиленной линейки.

Рис. 8.3
Рис. 8.3. Дрейф нуля системы отсчета.

Случай (а) соответствует варианту (в) на рис. 8.2, когда каждый кусок линейки связан со своей собственной системой отсчета. Случай (б) соответствует варианту (д) на рис. 8.2, когда оба куска линейки связаны одной системой координат. Случай (в) демонстрирует иное, чем для случая (а), расположение координатных осей. Какую систему координат выбрать для наших кусков линейки? В действительности, это дело вкуса каждого человека.

В парадоксе с распиленной линейкой проявляется эффект, который можно было бы назвать дрейфом нуля системы отсчета.

Рис. 8.4
Рис. 8.4. При движении стержня мы будем иметь
различное положение сокращенного стержня.

Пусть покоящийся стержень имеет такую длину, которую едва бы хватило для закрытия фотодатчиков 2 от лучей источников 1 (а). Тогда при движении стержня мы будем иметь различное положение сокращенного стержня: все будет зависеть от положения нулевой отметки системы координат, связанной с нашим стержнем. Поэтому на определенный момент времени может получиться так, что окажется закрытым левый фотодатчик (б), правый (в) или оба датчика окажутся освещенными источниками света (г).

Дрейфом нуля системы отсчета объясняется и известный парадокс зажженной лампочки. На рис. 8.1 показаны следующие варианты

Рис. 8.1
Рис. 8.1. Парадокс зажженной лампочки.
Что произойдет — вспыхнет или не вспыхнет лампочка.

Все элементы электрической цепи находятся в покое: лампочка горит, так как цепь замкнута (а). Из-за быстрого перемещения бруска В расстояние между контактами для наблюдателя А сократится, но лампочка на мгновение вспыхнет, так как цепь на некоторое время окажется замкнутой (б). При быстром движении проводящего стержня А для наблюдателя В цепь окажется постоянно разомкнутой и лампочка никогда не вспыхнет (в). Согласно принципу относительности, два последних случая — (б) и (в) — тождественны. Вопрос: что произойдет в действительности — вспыхнет или не вспыхнет лампочка — вот парадокс?

Таким образом, парадоксы распиленной линейки и зажженной лампочки доказывают, что кинематическое сокращение длины движущихся тел происходить не может, так как поступательное перемещение координатных систем по Галилею не имеет ничего общего с вращательным движением координатных систем по Лоренцу.

Гипотеза Фицджеральда – Лоренца
Сегодняшних школьников учат, что интерферометр Майкельсона,
согласно гипотезе Фицджеральд – Лоренца, испытывает сжатие
в направлении движения Земли.

Сегодняшних школьников учат, что интерферометр Майкельсона, согласно гипотезе Фицджеральда – Лоренца, испытывает сжатие в направлении движения Земли, поэтому, дескать, не происходит сдвиг интерференционных полос. Но тут же возникает недоуменный вопрос. Так как Майкельсон во время проведения опыта находился в движущейся координатной системе прибора K', то ни он, ни Лоренц с Фицджеральдом, ни кто-либо другой живущей на Земли не могли зафиксировать сжатие интерферометра.

Как теоретик превращается в обманщика
Как теоретик превращается в обманщика.

Те, кто сейчас говорит о гипотезе сокращения длины, реально превращаются в обманщиков, поскольку путают объектного наблюдателя — Майкельсона — с метанаблюдателями — Лоренцем и Фицджеральдом. На первых порах, когда теория относительности еще не сформировалась, Лоренц и Фицджеральд ничего не говорили о замедлении времени. Сегодня, рассказывая школьникам о гипотезе сокращения длины, учителя обязаны что-то говорить об одновременном замедлении времени. Но этого, к сожалению, не происходит, поскольку они самостоятельно не в силах выбраться из релятивистских спекуляций.

Радиолокационный метод
Радиолокационный метод.

Помимо представленных парадоксов нами были найдены математические ошибки во множестве других разделах релятивистской физики. Так, например, Макс Борн, глядя на Германа Минковского, попытался вывести формулы сокращения длины и замедления времени геометрическим путем (см. Радиолокационный метод). Его способ не сделался популярным, как диаграмма Минковского, поскольку Борн допустил еще больше ошибок, чем Минковский. Впрочем, источник ошибок для обоих авторов был один — это подгонка всех геометрических построений под "гипотезу Фицджеральда и Лоренца" о сокращении длины. Это амбициозная цель с самого начала была обречена на провал.

Диаграммы разъясняют метод коэффициента k
Диаграммы разъясняют метод коэффициента k.

Борн вместе Бомом, Бонди и Ходсбэри принимал участие в разработке радиолокационного метода или метода коэффициента k, который широко использовался для вывода различных формул теории относительности, в том числе, формулы доплеровского эффекта, формул сокращения длины и замедления времени, да и самих преобразований Лоренца. По этой методики авторы ухитрились вывести, например, релятивистскую формулу для эффекта Доплера — вот в таком виде якобы подтвержденную экспериментом.

Релятивистская формула доплеровского эффекта

Ошибки этого метода обнаруживаются просто: путем подстановки конкретных числовых данных. Эти ошибки неизбежны, поскольку все авторы метода уверовали, будто штрихованные оси сокращались на величину релятивистского радикала. Откуда взялась эта их вера, геометрически ничем не подтвержденная. Коротенько напомним основные вехи релятивистского наваждения.

Вам по учебнику отвечать?

Лоренцевы преобразования возникли из ложного толкования эксперимента Майкельсона — Морли. Физики конца 19-го века, не умея объяснить результаты опыта — а мы их объяснили в 1-й части нашего фильма — приняли гипотезу Фицджеральда — Лоренца, которая в умах релятивистов быстро приобрела статус догмы. Согласно их абсурдной теории оптический прибор, используемый Майкельсоном, уменьшил свои размеры в направлении движения Земли. Поскольку в приборе использовались световые сигналы, т.е. электромагнитное излучение, то ключ к разгадке, они посчитали кроется в уравнениях Максвелла.

Уравнения Максвелла

Начали искать некие преобразования координатных систем, которые бы оставляли эти уравнения в неизменном виде, говорят, в инвариантном виде. Таким образом, релятивисты рассчитывали распространить принцип относительности, справедливый для классической механики, на электромагнитную сферу. Преобразования Галилея оставляют четыре закона Ньютона в неизменном виде; теперь появились преобразования Лоренца, оставляющие четыре закона Максвелла тоже в неизменном (инвариантном) виде. За счет спекуляций на условии предельного перехода релятивисты стали утверждать, будто бы преобразования Галилея являются частным случаем общих преобразований Лоренца.

Принцип относительности Эйнштейна

В отношении инвариантности уравнений Максвелла имеется серьезное возражение. Дело в том, что Фарадей и Максвелл, разрабатывая теорию электромагнетизма, опирался на эфир в виде некой гидродинамической модели. Поэтому из уравнений Максвелла легко выводится волновое уравнение, справедливое для воды, воздуха и прочих сплошных сред (см. Инвариантность волнового уравнения).

Инвариантность волнового уравнения

Верно, что Лоренц вывел преобразования, названные Пуанкаре "лоренцевыми", из области электромагнетизма, которая, однако, в то время целиком покоилась на эфирных представлениях. Поскольку Лоренцевы преобразования, оставляющие уравнения Максвелла и выведенное из них волновое уравнение в инвариантном, т.е. неизменном, виде, возникает законный вопрос: а как быть с медленными акустическими волнами, распространяющимися, например, в воде и воздухе? Что скажут релятивисты, в частности, по вопросу предельного перехода. Ведь для акустических волн фигурирует, разумеется, не умопомрачительная скорость света, а вполне себе умеренная скорость звука где-нибудь в воде или воздухе.

Убийственный аргумент
Убийственный аргумент. Релятивист должен застрелиться,
когда обнаружит неинвариантность уравнений теплопроводности и
диффузии. Ведь они не подчиняются принципу относительности Эйнштейна.

Но самым убийственным аргументом для релятивистов является не этот. Они напрочь забывают, что преобразования Лоренца оставляют в инвариантном виде исключительно волновые уравнения — какую бы природу они не носила — электромагнитную или акустическую — но они не оставят в неизменном (инвариантном) виде все прочие уравнения механики.

Два уравнения

Посмотрите, так выглядит волновое уравнение, а так выглядит уравнение теплопроводности и диффузии, где вместо параметра 1/с2 стоит параметр 1/с где, c — постоянная теплопроводности или диффузии. Таким образом, невозможно говорить о каких-то универсальных преобразованиях, которые бы оставляли инвариантными все без исключения дифференциальные уравнения. Само такое требование является математически некорректным.